skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Smith, Noah A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tokenization is used almost universally by modern language models, enabling efficient text representation using multi-byte or multi-character tokens. However, prior work has shown that tokenization can introduce distortion into the model's generations, an issue known as the Prompt Boundary Problem (PBP). For example, users are often advised not to end their prompts with a space because it prevents the model from including the space as part of the next token. While this heuristic is effective in English, the underlying PBP continues to affect languages such as Chinese as well as code generation, where tokens often do not line up with word and syntactic boundaries. In this work, we present an inference-time method to convert any autoregressive LM with a BPE tokenizer into a character-level or byte-level LM. Our method efficiently solves the PBP and is also able to unify the vocabularies of language models with different tokenizers, allowing one to ensemble LMs with different tokenizers at inference time or transfer the post-training from one model to another using proxy-tuning. We demonstrate in experiments that the ensemble and proxy-tuned models outperform their constituents on downstream evals. Code is available at this https URL . 
    more » « less
  2. The pretraining data of today's strongest language models remains opaque, even when their parameters are open-sourced. In particular, little is known about the proportions of different domains, languages, or code represented in the data. While a long line of membership inference attacks aim to identify training examples on an instance level, they do not extend easily to global statistics about the corpus. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of the pretraining data. We introduce a novel attack based on a previously overlooked source of information—byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered vocabulary learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data: the first token is the most common byte pair, the second is the most common pair after merging the first token, and so on. Given a tokenizer's merge list along with data samples for each category of interest (eg, different natural languages), we formulate a linear program that solves for the relative proportion of each category in the tokenizer's training set. Importantly, to the extent to which tokenizer training data is representative of the pretraining data, we indirectly learn about the pretraining data. In controlled experiments, we show that our attack can recover mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released alongside recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o is much more multilingual than its predecessors, training on 10x more non-English data than GPT-3.5, Llama 3 and Claude are trained on predominantly code, and many recent models are trained on 7-16% books. We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs. 
    more » « less
  3. The pretraining data of today's strongest language models is opaque; in particular, little is known about the proportions of various domains or languages represented. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of training data. We introduce a novel attack based on a previously overlooked source of information: byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered list of merge rules learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data. Given a tokenizer's merge list along with example data for each category of interest, we formulate a linear program that solves for the proportion of each category in the tokenizer's training set. In controlled experiments, we show that our attack recovers mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released with recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o and Mistral NeMo's tokenizers are much more multilingual than their predecessors, training on 39% and 47% non-English language data, respectively; Llama 3 extends GPT-3.5's tokenizer primarily for multilingual (48%) use; GPT-3.5's and Claude's tokenizers are trained on predominantly code (~60%). We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs. 
    more » « less
  4. The inevitable appearance of spurious correlations in training datasets hurts the generalization of NLP models on unseen data. Previous work has found that datasets with paired inputs are prone to correlations between a specific part of the input (e.g., the hypothesis in NLI) and the label; consequently, models trained only on those outperform chance. Are these correlations picked up by models trained on the full input data? To address this question, we propose a new evaluation method, Counterfactual Attentiveness Test (CAT). CAT uses counterfactuals by replacing part of the input with its counterpart from a different example (subject to some restrictions), expecting an attentive model to change its prediction. Using CAT, we systematically investigate established supervised and in-context learning models on ten datasets spanning four tasks: natural language inference, reading comprehension, paraphrase detection, and visual & language reasoning. CAT reveals that reliance on such correlations is mainly data-dependent. Surprisingly, we find that GPT3 becomes less attentive with an increased number of demonstrations, while its accuracy on the test data improves. Our results demonstrate that augmenting training or demonstration data with counterfactuals is effective in improving models’ attentiveness. We show that models’ attentiveness measured by CAT reveals different conclusions from solely measuring correlations in data. 
    more » « less